Understanding Nonlinear Dynamics - Leon Glass  [Gebundene Ausgabe]

Understanding Nonlinear Dynamics - Leon Glass [Gebundene Ausgabe]

Wähle den Zustand

Preise sind Endpreise zzgl. Versandkosten
  1. Sehr guter Zustand: leichte Gebrauchsspuren vorhanden
  2. z.B. mit vereinzelten Knicken, Markierungen oder mit Gebrauchsspuren am Cover
  3. Gut als Geschenk geeignet

Das reBuy Versprechen

21 Tage Widerrufsrecht
Der Umwelt zuliebe
Geprüfte Gebrauchtware
Zustand: Sehr gut
  • Zustellung in 1-3 Werktagen
  • alert-danger Fast ausverkauft

31,99 €

Das reBuy Versprechen

21 Tage Widerrufsrecht
Der Umwelt zuliebe
Geprüfte Gebrauchtware
menu-left Zurück

Produktinformationen

Details
EAN / ISBN-139780387944234
Höhe23.5 cm
ProduktformGebundene Ausgabe
Auflage1995
Seitenanzahl420
HerausgeberSpringer New York
Inhaltsverzeichnis1 Finite-Difference Equations.- 1.1 A Mythical Field.- 1.2 The Linear Finite-Difference Equation.- 1.3 Methods of Iteration.- 1.4 Nonlinear Finite-Difference Equations.- 1.5 Steady States and Their Stability.- 1.6 Cycles and Their Stability.- 1.7 Chaos.- 1.8 Quasiperiodicity.- 1 Chaos in Periodically Stimulated Heart Cells.- Sources and Notes.- Exercises.- Computer Projects.- 2 Boolean Networks and Cellular Automata.- 2.1 Elements and Networks.- 2.2 Boolean Variables, Functions, and Networks.- 2 A Lambda Bacteriophage Model.- 3 Locomotion in Salamanders.- 2.3 Boolean Functions and Biochemistry.- 2.4 Random Boolean Networks.- 2.5 Cellular Automata.- 4 Spiral Waves in Chemistry and Biology.- 2.6 Advanced Topic: Evolution and Computation.- Sources and Notes.- Exercises.- Computer Projects.- 3 Self-Similarity and Fractal Geometry.- 3.1 Describing a Tree.- 3.2 Fractals.- 3.3 Dimension.- 5 The Box-Counting Dimension.- 3.4 Statistical Self-Similarity.- 6 Self-Similarity in Time.- 3.5 Fractals and Dynamics.- 7 Random Walks and Lévy Walks.- 8 Fractal Growth.- Sources and Notes.- Exercises.- Computer Projects.- 4 One-Dimensional Differential Equations.- 4.1 Basic Definitions.- 4.2 Growth and Decay.- 9 Traffic on the Internet.- 10 Open Time Histograms in Patch Clamp Experiments.- 11 Gompertz Growth of Tumors.- 4.3 Multiple Fixed Points.- 4.4 Geometrical Analysis of One-Dimensional Nonlinear Ordinary Differential Equations.- 4.5 Algebraic Analysis of Fixed Points.- 4.6 Differential Equations versus Finite-Difference Equations.- 4.7 Differential Equations with Inputs.- 12 Heart Rate Response to Sinusoid Inputs.- 4.8 Advanced Topic: Time Delays and Chaos.- 13 Nicholson’s Blowflies.- Sources and Notes.- Exercises.- Computer Projects.- 5 Two-Dimensional Differential Equations.- 5.1 The Harmonic Oscillator.- 5.2 Solutions, Trajectories, and Flows.- 5.3 The Two-Dimensional Linear Ordinary Differential Equation.- 5.4 Coupled First-Order Linear Equations.- 14 Metastasis of Malignant Tumors.- 5.5 The Phase Plane.- 5.6 Local Stability Analysis of Two-Dimensional, Nonlinear Differential Equations.- 5.7 Limit Cycles and the van der Pol Oscillator.- 5.8 Finding Solutions to Nonlinear Differential Equations.- 15 Action Potentials in Nerve Cells.- 5.9 Advanced Topic: Dynamics in Three or More Dimensions.- 5.10 Advanced Topic: Poincaré Index Theorem.- Sources and Notes.- Exercises.- Computer Projects.- 6 Time-Series Analysis.- 6.1 Starting with Data.- 6.2 Dynamics, Measurements, and Noise.- 16 Fluctuations in Marine Populations.- 6.3 The Mean and Standard Deviation.- 6.4 Linear Correlations.- 6.5 Power Spectrum Analysis.- 17 Daily Oscillations in Zooplankton.- 6.6 Nonlinear Dynamics and Data Analysis.- 18 Reconstructing Nerve Cell Dynamics.- 6.7 Characterizing Chaos.- 19 Predicting the Next Ice Age.- 6.8 Detecting Chaos and Nonlinearity.- 6.9 Algorithms and Answers.- Sources and Notes.- Exercises.- Computer Projects.- Appendix A A Multi-Functional Appendix.- A.1 The Straight Line.- A.2 The Quadratic Function.- A.3 The Cubic and Higher-Order Polynomials.- A.4 The Exponential Function.- A.5 Sigmoidal Functions.- A.6 The Sine and Cosine Functions.- A.7 The Gaussian (or “Normal”) Distribution.- A.8 The Ellipse.- A.9 The Hyperbola.- Exercises.- Appendix B A Note on Computer Notation.- Solutions to Selected Exercises.
HauptbeschreibungMathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.
Breite15.5 cm
AutorLeon Glass
Erscheinungsdatum 1995
SpracheEnglisch

Kundenbewertungen Analysis

Gesamtbewertung

0.0 von 5 Sternen